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The intermolecular Diels-Alder reaction1 is a powerful method
for the selective formation of functionalized cyclohexene deriva-
tives. The adoption of an intermolecular Diels-Alder reaction
in a synthetic sequence is nevertheless contingent upon electronic
matching of diene and dienophile, such that cycloaddition occurs
under thermal or Lewis-acid-catalyzed conditions. Many syntheti-
cally desirable intermolecular Diels-Alder reactions do not satisfy
this criteria. One solution to this problem is to tether the diene
and dienophile together through a temporary covalent connection.2-4

This enables reaction between the otherwise unreactive compo-
nents, since intramolecular Diels-Alder reactions (IMDA)5 are
more entropically favored than their intermolecular counterparts.
In addition, the constraining effects of the tether control the regio-
and stereoselectivity of the cycloaddition. The use of carbon-
metal or carbon-metalloid precursors in tethered IMDA reactions
is of particular interest, since the C-M bond in the product can
be subsequently transformed in a sequential6 reaction. Examples
of this approach using C-Si-O,2,3 C-Mg-O,4 and C-Al-O4

tethers have been previously reported. As part of a wider interest
in the use of boron substituents in controlling reactivity,7 we now
report aboron-tethered(C-B-O) IMDA approach.8 The general
strategy that we envisaged first connects alkenyl boronic acids
(or esters)1 to a diene component to give alkenyl boronic esters
2 (Scheme 1).9,7aA C-B-O tethered IMDA reaction would then

provide the boracycles3. Transformation of the carbon-boron
bond in3, using standard organoborane technology,10 would then
form a variety of functionalized cyclohexene derivatives4.

The requisiteE-alkenyl boronic acids or esters1 for this
preliminary study, were readily synthesized via standard hydrobo-
ration methodology from the corresponding alkynes,11 and oxida-
tion of the C-B bond of 3, with retention of stereochemistry,
was carried out as a representative transformation. Sorbic alcohol
5 and 3,5-hexadiene-1-ol812 were used as prototypical diene
components (Tables 1 and 2, respectively). The initial protocol
(Method A) employed for the tethered IMDA reactions was to
attach 2 equiv of diene per 1 equiv of dienophile. Thus, reaction
of 2 equiv of the dienyl alcohol5 with 1 (R2 ) H) in THF, in the
presence of molecular sieves, provided the corresponding IMDA
precursors2 which were used without further purification (Table
1, entries 1-6). The key IMDA reaction was then accomplished
in a degassed toluene solution, with 5 mol % of 2,6-di-tert-butyl-
4-methylphenol (BHT) as a free radical inhibitor, using a sealed
tube and a heating-bath temperature of 190°C. Oxidation with
trimethylamine-N-oxide and final hydrolysis then afforded the
diastereomeric cyclohexene diols6 and 7, which were readily
separable by column chromatography on a preparative scale. The
reactions occur with complete regiocontrol, with theendoproduct
6 as the predominant diastereomer.13 The presence of an activating
aryl group on the dienophile results in faster and more highly
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Scheme 1

Table 1. C-B-O Tethered [4+ 2] Reaction of5

entry R1 methoda d.r.b time, h yield, %c

1 nPr A 65:35 48 66
2 nBu A 65:35 48 68
3 Ph A 90:10 3 84
4 4-MeC6H4 A 90:10 4 83
5 4-MeOC6H4 A 85:15 6 78
6 3,4-(OCH2O)C6H3 A 85:15 6 75
7 nBu B 70:30 48 65
8 Ph B 90:10 3 83

a Method A: (i) 1 (R2 ) H) (1 equiv),5 (2 equiv), THF, 4 Å mol.
sieves, rt, o/n. (ii) PhCH3, 5 mol % BHT, 190°C. (iii) Me3N(O), C6H6,
80 °C, 24 h; H2O, 60°C, 0.5 h. Method B: (i)1 (R2 ) i-Pr) (1 equiv),
5 (1 equiv), PhCH3, 5 mol % BHT, 190°C. (ii) Me3N(O), C6H6, 80
°C, 24 h; H2O, 60°C, 0.5 h.b The diastereomeric ratios (6:7) are based
upon NMR analysis of the crude products.c Yields are for chromato-
graphically purified material and are calculated from1.

450 J. Am. Chem. Soc.1999,121,450-451

10.1021/ja9828004 CCC: $18.00 © 1999 American Chemical Society
Published on Web 12/23/1998



diastereoselective reactions (Table 1, entries 3-6). Overall, the
E-alkenyl boronic ester acts as a maskedE-enol dienophile. In
comparison to existing tethered Diels-Alder methodology,2-4 this
approach uses the more air- and water-stable alkenyl boronic acids
as precursors and leads to more synthetically versatile cycload-
ducts.

One drawback to the use of Method A is that 2 equiv of the
diene per 1 equiv of dienophile are necessary. This limitation is
readily overcome using a “dummy group” on the boronic ester
precursors. Thus, in the second IMDA protocol (Method B),direct
treatment of 1 equiv of diisopropyl boronates1 (R2 ) i-Pr)14 with
1 equiv of5 in a sealed tube at 190°C, and subsequent oxidation
provides diols6 and7 (Table 1, entries 7 and 8). The yields and
selectivity obtained in the two protocols are comparable.

The use of a longer tethering chain is exemplified by the use
of 3,5-hexadiene-1-ol8, as the dienyl alcohol precursor (Table
2). For both Methods A and B, the IMDA reactions are more
facile (3-4 h at 190°C) than the examples shown in Table 1,
and the diastereoselection is reversed, favoring formation of the
exoproducts10.13

It is noteworthy that the reactions are readily amenable to scale-
up, and can be run at relatively high concentrations (ca. 1 M).
The utility of this methodology was also demonstrated for the
formation of bicyclic diols12, with control of four contiguous
stereogenic centers (eq 1). Thus, using diene1115 and a modified

Method B, several diols12 were formed in each case as single
diastereomers.13 As anticipated for intramolecular Diels-Alder
reactions, the addition ofgemdimethyl groups in the tethering

chain allowed the use of milder reaction conditions because of
Thorpe-Ingold rate acceleration (eqs 2 and 3).16

The tethered nature of these cycloadditions was confirmed by
the absence of cycloaddition observed for alkenyl catechol or
ethylene glycol boronates heated in the presence of either5 or 8.
In this case the reduced lability of these cyclic boronates prevents
tethering. Similarly, protection of5 or 8 as their benzyl ethers
and subsequent heating in the presence of alkenyl boronic acids
did not result in the formation of cycloadducts. An X-ray
structure13 of a tethered boracycle1517 was also obtained (Figure
1).

In summary, we have established an efficient new boron-
tethered Diels-Alder reaction using alkenyl boronic esters as
dienophilic components. The effect of the tether length on the
efficacy and the mode of diastereoselectivity of the reaction was
demonstrated. The ready availability of alkenyl boronic acids and
the synthetic flexibility of the C-B bond in the cycloadducts is
anticipated to provide access to a variety of functionalized
cyclohexene derivatives and underscores the versatility of boronic
acids as synthetic precursors. Further work on the utility of this
approach, for [4+ 2] and other cycloaddition reactions of tethered
boronic ester derivatives will be reported in due course.
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Table 2. C-B-O Tethered [4+ 2] Reaction of8

entry R1 methoda d.r.b yield, %c

1 nBu A 25:75 80
2 CH2OBn A 20:80 83
3 Ph A 20:80 80
4 nBu B 25:75 84
5 iPr B 20:80 80
6 Ph B 20:80 85

a Method A: (i) 1 (R2 ) H) (1 equiv),8 (2 equiv), THF, 4 Å mol.
sieves, rt, o/n. (ii) PhCH3, 5 mol % BHT, 190°C, 3-4 h. (iii) Me3N(O),
C6H6, 80 °C, 24 h; H2O, 60°C, 0.5 h. Method B: (i)1 (R2 ) i-Pr) (1
equiv), 8 (1 equiv), PhCH3, 5 mol % BHT, 190°C, 3-4 h. (ii)
Me3N(O), C6H6, 80°C, 24 h; H2O, 60°C, 0.5 h.b Diastereomeric ratios
(9:10) are based upon on NMR analysis of the crude products.c Yields
are for chromatographically purified material and are calculated from
1.

Figure 1. ORTEP diagram of15.
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